ENANTIOSELECTIVE SYNTHESIS OF (R) - AND (S) -4-[(METHOXYCARBONYL) - METHYL] - 2-AZETIDINONES FROM D-GLYCERALDEHYDE ACETONIDE

Hiroshi Matsunaga, Tomoko Sakamaki, Hiroto Nagaoka, and Yasuji Yamada* Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

Summary: (R)-N-Benzyl-4-[(methoxycarbonyl)methyl]-2-azetidinone ($\underline{10}$) and (S)-4-[(methoxycarbonyl)methyl]-2-azetidinone ($\underline{17}$) were enantioselectively synthesized from the benzylamino ester $\underline{3}$, which was prepared by the highly stereoselective 1,4-addition of benzylamine to the α ,3-unsaturated ester $\underline{2}$ derived from D-glyceraldehyde acetonide (1).

D-Glyceraldehyde acetonide ($\underline{1}$) easily prepared from D-mannitol is known to be a useful and inexpensive starting material for the synthesis of various optically active natural products. In the course of our investigation on the synthetic utility of $\underline{1}$, we have accomplished the conversion of $\underline{1}$ into optically active $\boldsymbol{\beta}$ -lactams. This paper describes the highly stereoselective 1,4-addition reaction of benzylamine to $\boldsymbol{\alpha},\boldsymbol{\beta}$ -unsaturated ester $\underline{2}$ derived from $\underline{1}$, and the enantioselective synthesis of (R)-N-benzyl-4-[(methoxycarbonyl)methyl]-2-azetidinone ($\underline{10}$) and (S)-4-[(methoxycarbonyl)methyl]-2-azetidinone ($\underline{17}$) from the resulting $\boldsymbol{\beta}$ -amino ester 3.

The Wittig reaction of $\underline{1}$ with $Ph_3P=CHCO_2CH_3$ (MeOH, 0°C) gave a separable mixture of the α ,3-unsaturated ester $\underline{2a}$ (Z form) and $\underline{2b}$ (E form) (8:1). The reaction of $\underline{2a}$ with benzylamine (2 equiv.) in the absence of solvent at -50°C for 50 h afforded exclusively (3R)-benzylamino ester $\underline{3}$, 2 , 3 [α]_D-8.0° (c=1.3, EtOH), in 85% yield. The stereoselectivity was found to be dependent on the reaction temperature; at -20°C, $\underline{2a}$ gave a 15:1 mixture 4 of $\underline{3}$ and its stereoisomer $\underline{4}$, [α]_D+14.6° (c=1.0, EtOH); at 0°C, $\underline{2a}$ gave a 4:1 mixture of $\underline{3}$ and $\underline{4}$. The similar stereoselectivity and yield were obtained on the reaction of the (E)-

isomer $\underline{2b}$ with benzylamine under the same conditions as in $\underline{2a}$. These findings allowed the use of a mixture of $\underline{2a}$ and $\underline{2b}$ for the synthesis of the a-amino ester $\underline{3}$ (85% yield). The amino ester $\underline{3}$ thus obtained was enantioselectively converted into a-lactam $\underline{10}$ with (R)-configuration and $\underline{17}$ with (S)-configuration at the C-4 position of the a-lactams. The former a-lactam can be transformed into unnatural series of carbapenem antibiotics and the latter one is the versatile intermediate for the synthesis of natural (+)-thienamycin. a

The synthesis of $\underline{10}$ from $\underline{3}$ is outlined in Scheme 1. Saponification of $\underline{3}$ with 0.01 M ethanolic sodium hydroxide (20°C, 15 h) gave the sodium carboxylate,

which was treated with thionyl chloride (benzene, 80° C), and then with triethylamine (20° C, 12 h) to furnish the azetidinone $\underline{5}$, $[\alpha]_{D}$ -74.9° (c=0.6, benzene), in 46% yield from $\underline{3}$. The acetonide group in $\underline{5}$ was removed by acid treatment (80% aq. AcOH, 40° C) to afford the diol $\underline{6}$, $[\alpha]_{D}$ -71.3° (c=0.94, EtOH), in 80% yield. The diol $\underline{6}$ was converted \underline{via} the dimesylate $\underline{7}$ (3.5 equiv. of MsCl, 4.5 equiv. of Et $_{3}$ N, CH $_{2}$ Cl $_{2}$, 0° C) to the olefin $\underline{8}$, $[\alpha]_{D}$ -93.6° (c=1.28, CHCl $_{3}$), (10 equiv. of NaI, 10 equiv. of Zn, DMF, reflux, 8 h) in 92% overall yield. Treatment of $\underline{8}$ with diborane (THF, 20° C), followed by oxidative work-up ($H_{2}O_{2}$, NaOH) gave the alcohol $\underline{9}$, $[\alpha]_{D}$ -7.6° (c=0.2, CHCl $_{3}$), in 54% yield. Jones oxidation of $\underline{9}$ and the subsequent methylation with CH $_{2}N_{2}$ afforded (R)-N-benzyl-4-[(methoxycarbonyl)-methyl]-2-azetidinone $\underline{10}$, $[\alpha]_{D}$ -22.1° (c=0.28, benzene). The spectral data of this product were all identical with those reported for the enantiomer of $\underline{10}$, $[\alpha]_{D}$ +23.8° (c=1.0, benzene), prepared from L-aspartic acid by Koga et al.6 except for the sign of the optical rotation.

The synthesis of (S)- α -lactam $\underline{17}$ from $\underline{3}$ is shown in Scheme 2. The protection of the amino group in $\underline{3}$ with benzyloxycarbonyl chloride in the presence of potassium carbonate (THF, rt) gave $\underline{11}$ in 94% yield. Exposure of $\underline{11}$ to 75% aqueous acetic acid (40°C, 3.5 h) gave diol $\underline{12}$ (70% yield), $[\alpha]_D$ +34.4° (c=1.2, CHCl₃),

Scheme 2

(+) - Thienamycin

which was then converted into the aldehyde $\underline{13}$ (1.1 equiv. of sodium metaperiodate, DME - $\mathrm{H_2O}$, 0°C). The aldehyde $\underline{13}$ was subjected to Wittig reaction ($\mathrm{Ph_3P=CHOCH_3}$, THF, -43°C) to give the enol ether $\underline{14}$ in 75% yield (from $\underline{12}$) as a 1:1 isomeric mixture. Acid treatment of $\underline{14}$ with 75% aqueous acetic acid (40°C, 8 h) afforded the aldehyde $\underline{15}$, $[\alpha]_D+11.7^\circ$ (c=0.67, CHCl₃), which was treated with Jones reagent to give the carboxylic acid $\underline{16}$, $[\alpha]_D+116.1^\circ$ (c=0.55, CHCl₃) in 92% yield from $\underline{14}$. The removal of the benzyl and the benzyloxycarbonyl groups from nitrogen in $\underline{16}$ by catalytic reduction ($\mathrm{H_2}$, 10% Pd-C, MeOH, 50°C), followed by treatment with $\mathrm{Ph_3P}$ - (PyS)₂ in acetonitrile⁷ afforded (S)-4-[(methoxycarbonyl)methyl]-2-azetidinone ($\underline{17}$) (81% yield from $\underline{16}$), $[\alpha]_D+64.5^\circ$ (c=0.2, CHCl₃), whose spectral data were all identical with those reported. 7,8

The above-mentioned methods thus provide access to enantioselective synthesis of both (+)- and (-)-thienamycin from D-glyceraldehyde acetonide.

References and Notes

- 1) E.J.Corey, H.Shirahama, H.Yamamoto, S.Terashima, A.Venkateswarlu, and T.K. Schaaf, J.Am.Chem.Soc., 93, 1490 (1971); G.Stork and T.Takahashi, J.Am.Chem. Soc., 99, 1275 (1977); H.Yamaguchi and T.Mukaiyama, Chemistry Lett., 1005 (1982); N.Minami, S.S.Ko, and Y.Kishi, J.Am.Chem.Soc., 104, 1109 (1982).
- 2) The absolute configuration of the benzylamino group was confirmed by the conversion of $\underline{3}$ into $\underline{10}$. The high asymmetric induction was also observed on the 1,4-addition reaction of the α ,3-unsaturated ester $\underline{2}$ with ammonia and amines such as methylamine. These Michael type addition will be published in a separate paper.
- 3) All new compounds have been fully characterized by IR, $^1\text{H-NMR}$ (200 MHz), and high resolution mass spectroscopy and/or combustion analysis.
- 4) The ratios of the products were determined by HPLC analysis.
- 5) K.Okano, T.Izawa, and M.Ohno, Tetrahedron Lett., 24, 217 (1983).
- 6) N.Ikota, H.Shibata, and K.Koga, Heterocycles, 14, 1077 (1980).
- 7) M.Ohno, S.Kobayashi, T.Iimori, Y-F.Wang, and T.Izawa, J.Am.Chem.Soc., <u>103</u>, 2405 (1981).
- 8) Here we have accomplished a formal total synthesis of (+)-thienamycin from D-mannitol.

(Received in Japan 13 April 1983)